Author:
Khashij Maryam,Mehralian Mohammad,Goodarzvand Chegini Zahra
Abstract
Purpose
The purpose of this study to investigate acetaminophen (ACT) degradation efficiencies by using ozone/persulfate oxidation process in a batch reactor. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated.
Design/methodology/approach
The experiments were in the 2 L glass vessels. Ozone gas with flow rate at 70 L.h−1 was produced by ozone generator. After the adjustment of the pH, various dosages of persulfate (1, 3, 5, 7 and 9 mmol.L−1) were then added to the 500 mL ACT-containing solution with 150 mg.L−1 of concentration. Afterward, ozone gas was diffused in glass vessels. The solution after reaction flowed into the storage tank for the detection. The investigated parameters included pH and the amount of ozone and persulfate addition. For comparison of the ACT degradation efficiency, ozone/persulfate, ozone and persulfate oxidation in reactor was carried out. The ACT concentration using a HPLC system equipped with 2998 PDA detector was determined at an absorbance of 242 nm.
Findings
ACT degradation percentage by using ozone or persulfate in the process were at 63.7% and 22.3%, respectively, whereas O3/persulfate oxidation process achieved degradation percentage at 91.4% in 30 min. Degradation efficiency of ACT was affected by different parameter like pH and addition of ozone or persulfate, and highest degradation obtained when pH and concentrations of persulfate and ozone was 10 and 3 mmol.L−1 and 60 mg.L−1, respectively. O3, OH• and SO4− were evidenced to be the radicals for degradation of ACT through direct and indirect oxidation. Gas chromatography–mass spectrometer analysis showed intermediates including N-(3,4-dihydroxyphenyl) formamide, hydroquinone, benzoic acid, 4-methylbenzene-1,2-diol, 4-aminophenol.
Practical implications
This study provided a simple and effective way for degradation of activated ACT as emerging contaminants from aqueous solution. This way was conducted to protect environment from one of the most important and abundant pharmaceutical and personal care product in aquatic environments.
Originality/value
There are two main innovations. One is that the novel process is performed successfully for pharmaceutical degradation. The other is that the optimized conditions are obtained. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated.
Subject
Materials Chemistry,Surfaces, Coatings and Films
Reference30 articles.
1. Degradation of propranolol by UV-activated persulfate oxidation: reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation;Science of the Total Environment,2019
2. Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater;Journal of Hazardous Materials,2019
3. Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes;Ultrasonics Sonochemistry,2019
4. Electron-transfer reactions in organic chemistry,1982
5. Evaluation and treatment of acetaminophen toxicity;Advances in Pharmacology,2019
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献