Innovation-driven clustering for better national innovation benchmarking

Author:

Alqararah KhatabORCID,Alnafrah IbrahimORCID

Abstract

PurposeThis research paper aims to contribute to the field of innovation performance benchmarking by identifying appropriate benchmarking groups and exploring learning opportunities and integration directions.Design/methodology/approachThe study employs a multi-dimensional innovation-driven clustering methodology to analyze data from the 2019 edition of the Global Innovation Index (GII). Hierarchical and K-means Cluster Analysis techniques are applied using various sets of distance matrices to uncover and analyze distinct innovation patterns.FindingsThis study classifies 129 countries into four clusters: Specials, Advanced, Intermediates and Primitives. Each cluster exhibits strengths and weaknesses in terms of innovation performance. Specials excel in the areas of institutions and knowledge commercialization, while the Advanced cluster demonstrates strengths in education and ICT-related services but shows weakness in patent commercialization. Intermediates show strengths in venture-capital and labour productivity but display weaknesses in R&D expenditure and the higher education quality. Primitives exhibit strength in creative activities but suffer from weaknesses in digital skills, education and training. Additionally, the study has identified 35 indicators that have negligible variance contributions across countries.Originality/valueThe study contributes to finding the relevant countries’ grouping for the enhancement of communication, integration and learning. To this end, this study highlights the innovation structural differences among countries and provides tailored innovation policies.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3