A numerical method based on Haar wavelets for the Hadamard-type fractional differential equations

Author:

ul Abdeen ZainORCID,Rehman Mujeeb urORCID

Abstract

PurposeThe purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear Hadamard-type fractional differential equations.Design/methodology/approachThe aim of this paper is to develop a numerical scheme for numerical solutions of Hadamard-type fractional differential equations. The classical Haar wavelets are modified to align them with Hadamard-type operators. Operational matrices are derived and used to convert differential equations to systems of algebraic equations.FindingsThe upper bound for error is estimated. With the help of quasilinearization, nonlinear problems are converted to sequences of linear problems and operational matrices for modified Haar wavelets are used to get their numerical solution. Several numerical examples are presented to demonstrate the applicability and validity of the proposed method.Originality/valueThe numerical method is purposed for solving Hadamard-type fractional differential equations.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference41 articles.

1. A survey on Hadamard and Hilfer fractional differential equations: analysis and stability;Choas Solitions and Fractals,2017

2. Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type;Advances in Difference Equations,2017

3. Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations;Electronic Journal of Differential Equations,2017

4. Existence and Uniqueness results for a coupled system of Caputo–Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions;Fractal and Fractional,2020

5. Computing Hadamard type operators of variable fractional order;Applied Mathematics and Computation,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3