Abstract
PurposeThe purpose of this paper is to investigate the effect of initial stress and heterogeneity on the propagation of torsional waves in dissipative medium. The problem consists of dry sand poroelastic half-space embedded between heterogeneous self-reinforced half-space and poroelastic medium. The frequency equation is derived in the framework of Biot's theory with some variants.Design/methodology/approachTorsional wave propagation in dry sand poroelastic half-space embedded between self-reinforced half-space and poroelastic medium. All the constituents here are assumed to be dissipative, heterogeneous and initial stressed.FindingsPhase velocity and attenuation are computed against wavenumber for various values of self-reinforcement parameter, inhomogeneity parameter and initial stress. Particular cases are discussed in absence of dissipation. The numerical results are presented graphically.Originality/valueInitial stress and heterogeneity effects on torsional waves in dry sand half-space between reinforced half-space and poroelastic medium are investigated. The frequency equation is derived, and which intern gives the phase velocity and attenuation coefficient for various values of initial stress, self-reinforcement parameter and heterogeneity parameter. From the numerical results, it is clear that as wavenumber varies phase velocity and attenuation are periodic in nature for all the cases. Particular cases are discussed in absence of dissipation. This kind of analysis can be extended to any elastic solid by taking magnetic, thermo and piezoelectric effects into account.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software