In pursuit of a suitable machine learning algorithm for hardness prediction of aluminium alloy

Author:

Chhabri Suman,Hazra Krishnendu,Choudhury AmitavaORCID,Sinha ArijitORCID,Ghosh ManojitORCID

Abstract

PurposeBecause of the mechanical properties of aluminium (Al), an accurate prediction of its properties has been challenging. Researchers are seeking reliable models for predicting the mechanical strength of Al alloys owing to the continuous emergence of new Al alloys and their applications. There has been widespread use of empirical and statistical models for the prediction of different mechanical properties of Al and Al alloy, such as linear and nonlinear regression. Nevertheless, the development of these models requires laborious experimental work, and they may not produce accurate results depending on the relationship between the Al properties, mix of other compositions and curing conditions.Design/methodology/approachNumerous machine learning (ML) models have been proposed as alternative approaches for predicting the strengths of Al and its alloys. The hardness of Al alloys has been predicted by implementing various ML algorithms, such as linear regression, ridge regression, lasso regression and artificial neural network (ANN). This investigation critically analysed and discussed the application and performance of models generated by linear regression, ridge regression, lasso regression and ANN algorithms using different mechanical properties as training parameters.FindingsConsidering the definition of the problem, linear regression has been found to be the most suitable algorithm in predicting the hardness values of AA7XXX alloys as the model generated by it best fits the data set.Originality/valueThe work presented in this paper is original and not submitted anywhere else.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3