Author:
Wang Changsheng,Han Xiao,Yang Caixia,Zhang Xiangkui,Hou Wenbin
Abstract
Purpose
Numerous finite elements are proposed based on analytical solutions. However, it is difficult to find the solutions for complicated governing equations. This paper aims to present a novel formulation in the framework of assumed stress quasi-conforming method for the static and free vibration analysis of anisotropic and symmetric laminated plates.
Design/methodology/approach
Firstly, an initial stress approximation ruled by 17 parameters, which satisfies the equilibrium equations is derived to improve the performance of the constructed element. Then the stress matrix is treated as the weighted function to weaken the strain-displacement equations. Finally, the Timoshenko’s laminated composite beam functions are adopted as boundary string-net functions for strain integration.
Findings
Several numerical examples are presented to show the performance of the new element, and the results obtained are compared with other available ones. Numerical results have proved that the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.
Originality/value
This paper proposes a new QC element for the static and free vibration analysis of anisotropic and symmetric laminated plates. In contrast with the complicated analytical solutions of the equilibrium equations, an initial stress approximation ruled by 17 parameters is adopted here. The Timoshenkos laminated composite beam functions are introduced as boundary string-net functions for strain integration. Numerical results demonstrate the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献