Author:
Ahmad Mian Ilyas,Benner Peter,Feng Lihong
Abstract
Purpose
The purpose of this paper is to propose an interpolation-based projection framework for model reduction of quadratic-bilinear systems. The approach constructs projection matrices from the bilinear part of the original quadratic-bilinear descriptor system and uses these matrices to project the original system.
Design/methodology/approach
The projection matrices are constructed by viewing the bilinear system as a linear parametric system, where the input associated with the bilinear part is treated as a parameter. The advantage of this approach is that the projection matrices can be constructed reliably by using an a posteriori error bound for linear parametric systems. The use of the error bound allows us to select a good choice of interpolation points and parameter samples for the construction of the projection matrices by using a greedy-type framework.
Findings
The results are compared with the standard quadratic-bilinear projection methods and it is observed that the approximations through the proposed method are comparable to the standard method but at a lower computational cost (offline time).
Originality/value
In addition to the proposed model order reduction framework, the authors extend the one-sided moment matching parametric model order reduction (PMOR) method to a two-sided method that doubles the number of moments matched in the PMOR method.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献