Development and comparative of a new meta-ensemble machine learning model in predicting construction labor productivity

Author:

Karatas Ibrahim,Budak Abdulkadir

Abstract

PurposeThe study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining machine learning models to increase the prediction success in construction labor productivity prediction models.Design/methodology/approachCategorical and numerical data used in prediction models in many studies in the literature for the prediction of construction labor productivity were made ready for analysis by preprocessing. The Python programming language was used to develop machine learning models. As a result of many variation trials, the models were combined and the proposed novel voting and stacking meta-ensemble machine learning models were constituted. Finally, the models were compared to Target and Taylor diagram.FindingsMeta-ensemble models have been developed for labor productivity prediction by combining machine learning models. Voting ensemble by combining et, gbm, xgboost, lightgbm, catboost and mlp models and stacking ensemble by combining et, gbm, xgboost, catboost and mlp models were created and finally the Et model as meta-learner was selected. Considering the prediction success, it has been determined that the voting and stacking meta-ensemble algorithms have higher prediction success than other machine learning algorithms. Model evaluation metrics, namely MAE, MSE, RMSE and R2, were selected to measure the prediction success. For the voting meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0499, 0.0045, 0.0671 and 0.7886, respectively. For the stacking meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0469, 0.0043, 0.0658 and 0.7967, respectively.Research limitations/implicationsThe study shows the comparison between machine learning algorithms and created novel meta-ensemble machine learning algorithms to predict the labor productivity of construction formwork activity. The practitioners and project planners can use this model as reliable and accurate tool for predicting the labor productivity of construction formwork activity prior to construction planning.Originality/valueThe study provides insight into the application of ensemble machine learning algorithms in predicting construction labor productivity. Additionally, novel meta-ensemble algorithms have been used and proposed. Therefore, it is hoped that predicting the labor productivity of construction formwork activity with high accuracy will make a great contribution to construction project management.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference71 articles.

1. Productivity analysis of construction worker activities using smartphone sensors,2016

2. Using multivariable linear regression technique for modeling productivity construction in Iraq;Open Journal of Civil Engineering,2013

3. Productivity estimation model for bracklayer in construction projects using neural network;Al-Qadisiyah Journal for Engineering Sciences,2016

4. Application of data mining techniques to quantify the relative influence of design and installation characteristics on labor productivity;Journal of Construction Engineering and Management,2017

5. Bagging predictors;Machine Learning,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3