Author:
Fan Yerui,Wu Yaxiong,Yuan Jianbo
Abstract
Purpose
This study aims to improve the muscle model control performance of a tendon-driven musculoskeletal system (TDMS) to overcome disadvantages such as multisegmentation and strong coupling. An adaptive network controller (ANC) with a disturbance observer is established to reduce the modeling error of the musculoskeletal model and improve its antidisturbance ability.
Design/methodology/approach
In contrast to other control technologies adopted for musculoskeletal humanoids, which use geometric relationships and antagonist inhibition control, this study develops a method comprising of three parts. (1) First, a simplified musculoskeletal model is constructed based on the Taylor expansion, mean value theorem and Lagrange–d’Alembert principle to complete the decoupling of the muscle model. (2) Next, for this simplified musculoskeletal model, an adaptive neuromuscular controller is designed to acquire the muscle-activation signal and realize stable tracking of the endpoint of the muscle-driven robot relative to the desired trajectory in the TDMS. For the ANC, an adaptive neural network controller with a disturbance observer is used to approximate dynamical uncertainties. (3) Using the Lyapunov method, uniform boundedness of the signals in the closed-loop system is proved. In addition, a tracking experiment is performed to validate the effectiveness of the adaptive neuromuscular controller.
Findings
The experimental results reveal that compared with other control technologies, the proposed design techniques can effectively improve control accuracy. Moreover, the proposed controller does not require extensive considerations of the geometric and antagonistic inhibition relationships, and it demonstrates anti-interference ability.
Originality/value
Musculoskeletal robots with humanoid structures have attracted considerable attention from numerous researchers owing to their potential to avoid danger for humans and the environment. The controller based on bio-muscle models has shown great performance in coordinating the redundant internal forces of TDMS. Therefore, adaptive controllers with disturbance observers are designed to improve the immunity of the system and thus directly regulate the internal forces between the bio-muscle models.
Reference21 articles.
1. Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system;Science Robotics,2017
2. Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2020
3. Practical tracking of permanent magnet linear motor via logarithmic sliding mode control;IEEE/ASME Transactions on Mechatronics,2022
4. Adaptive fuzzy control for a hybrid spacecraft system with spatial motion and communication constraints;IEEE Transactions on Fuzzy Systems,2021
5. Adaptive neural network control of a robotic manipulator with time-varying output constraints;IEEE Transactions on Cybernetics,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献