Low-cost AI-based solar panel detection drone design and implementation for solar power systems

Author:

Özer Tolga,Türkmen Ömer

Abstract

Purpose This paper aims to design an AI-based drone that can facilitate the complicated and time-intensive control process for detecting healthy and defective solar panels. Today, the use of solar panels is becoming widespread, and control problems are increasing. Physical control of the solar panels is critical in obtaining electrical power. Controlling solar panel power plants and rooftop panel applications installed in large areas can be difficult and time-consuming. Therefore, this paper designs a system that aims to panel detection. Design/methodology/approach This paper designed a low-cost AI-based unmanned aerial vehicle to reduce the difficulty of the control process. Convolutional neural network based AI models were developed to classify solar panels as damaged, dusty and normal. Two approaches to the solar panel detection model were adopted: Approach 1 and Approach 2. Findings The training was conducted with YOLOv5, YOLOv6 and YOLOv8 models in Approach 1. The best F1 score was 81% at 150 epochs with YOLOv5m. In total, 87% and 89% of the best F1 score and mAP values were obtained with the YOLOv5s model at 100 epochs in Approach 2 as a proposed method. The best models at Approaches 1 and 2 were used with a developed AI-based drone in the real-time test application. Originality/value The AI-based low-cost solar panel detection drone was developed with an original data set of 1,100 images. A detailed comparative analysis of YOLOv5, YOLOv6 and YOLOv8 models regarding performance metrics was realized. Gaussian, salt-pepper noise addition and wavelet transform noise removal preprocessing techniques were applied to the created data set under the proposed method. The proposed method demonstrated expressive and remarkable performance in panel detection applications.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3