Author:
Gdula Michal,Burek Jan,Zylka Lukasz,Plodzien Marcin
Abstract
Purpose
The purpose of this paper is to determine the influence of a toroidal cutter axis orientation and a variable radius of curvature of the machined contour of sculptured surface on the five-axes milling process. Simulation and experimental research performed in this work are aimed to determine the relationship between the parameters of five-axes milling process and the shape and dimensional accuracy of curved outline of Inconel 718 alloy workpiece.
Design/methodology/approach
A subject of research are sculptured surfaces of the turbine blade. Simulation research was performed using the method of direct mapping tools in the CAD environment. The machining research was carried out with the use of multi-axis machining center DMU 100 monoBLOCK DMG, equipped with rotating dynamometer to measure the components of the cutting force. To control the shape and dimensional accuracy, the coordinate measuring machine ZEISS ACCURA II was used.
Findings
In this paper, the effect of the toroidal cutter axis orientation and the variable radius of curvature of the machined contour on the parameters of five-axes milling process and the accuracy of the sculptured surfaces was determined.
Practical implications
Five-axes milling with the use of a toroidal cutter is found in the aviation industry, where sculptured surfaces of the turbine blades are machined. The results of the research allow more precise planning of five-axes milling and increase of the turbine blades accuracy.
Originality/value
This paper significantly complements the current state of knowledge in the field of five-axes milling of turbine blades in terms of their accuracy.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献