Morphing wing with skin discontinuity – kinematic concept

Author:

Tarnowski Andrzej

Abstract

Purpose This paper aims to describe the concept of morphing tailless aircraft with discontinuous skin and its preliminary kinematic solution. Project assumptions, next steps and expected results are briefly presented. Design/methodology/approach Multidisciplinary numerical optimization will be used to determine control allocation for wing segments rotation. Wing demonstrator will be fabricated and tested in wind tunnel. Results will be used in construction of flying model and design of its control system. Flight data of morphing demonstrator and reference aircraft will result in comparative analysis of both technologies. Findings Proposed design combines advantages of wing morphing without complications of wing’s structure elastic deformation. Better performance, stability and maneuverability is expected due to wing’s construction which is entirely composed of unconnected wing segments. Independent control of each segment allows for free modeling of spanwise lift force distribution. Originality/value Nonlinear multipoint distribution of wing twist as the only mechanism for control and flight performance optimization has never been studied or constructed. Planned wind tunnel investigation of such complex aerodynamic structure has not been previously published and will be an original contribution to the development of aviation and in particular to the aerodynamics of wing with discontinuous skin.

Publisher

Emerald

Subject

Aerospace Engineering

Reference16 articles.

1. Flight testing and response characteristics of a variable gull-wing morphing aircraft,2004

2. Morphing aircraft: the need for a new design philosophy;Aerospace Science and Technology,2015

3. A review of morphing aircraft;Journal of Intelligent Material Systems and Structures,2011

4. Development and flight testing of a morphing aircraft, the NextGen MFX-1,2007

5. Roll control for a micro air vehicle using active wing morphing,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic and aerodynamic analysis of a Microraptor-inspired foldable wing mechanism;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-09-13

2. Stability Characteristics of Wing Span and Sweep Morphing for Small Unmanned Air Vehicle: A Mathematical Analysis;Mathematical Problems in Engineering;2020-07-03

3. A 2d aerodynamic study on morphing of the naca 2412 aerofoil;13th Research and Education in Aircraft Design: Conference proceedings;2019

4. Design of morphing wing with surface discontinuity;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2018-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3