Sensing for aerospace combustor health monitoring

Author:

Mills Andrew Robert,Kadirkamanathan Visakan

Abstract

Purpose This paper proposes new methods of fault detection for fuel systems in order to improve system availability. Novel fault systems are required for environmentally friendly lean burn combustion, but can carry high risk failure modes particularly through their control valves. The purpose of the developed technology is the rapid detection of these failure modes, such as valve sticking or impending sticking, and therefore to reduce this risk. However, sensing valve state is challenging due to hot environmental temperatures, which results in a low reliability for conventional position sensing. Design/methodology/approach Starting with the business needs elicited from stakeholders, a quality functional deployment process is performed to derive sensing system requirements. The process acknowledges the difference between test-bed and in-service aerospace needs through weightings on requirements and maps these customer requirements to systems performance metrics. The design of the system must therefore optimise the sensor suite, on- and off-board signal processing and acquisition strategy. Findings Against this systems engineering process, two sensing strategies are outlined which illustrate the span of solutions, from conventional gas path sensing with advanced signal processing to novel non-invasive sensing concepts. While conventional sensing may be feasible within a test cell, the constraints of aerospace in-service operation may necessitate more novel alternatives. Acoustic emission (detecting very high frequency surface vibration waves) sensing technology is evaluated to provide a non-invasive, remote and high temperature tolerant solution. Through this comparison, the considerations for the end-to-end system design are highlighted to be critical to sensor deployment success in-service. Practical implications The paper provides insight into different means of addressing the important problem of monitoring faults in combustor systems in gas turbines. By casting of the complex design problem within a systems engineering framework, the outline of a toolset for solution evaluation is provided. Originality/value The paper provides three areas of significant contributions: a diversity of methods to diagnosing fuel system malfunctions by measuring changes fuel flow distributions, through novel means, and the combustor exit temperature profiles (cause and effect); the use of analytical methods to support the selection (types and quantities) and placement of sensors to ensure adequate state awareness while minimising their impact on the engine system cost and weight; and an end-to-end data processing approach to provide optimised information for the engine maintainers allowing informed decision-making.

Publisher

Emerald

Subject

Aerospace Engineering

Reference23 articles.

1. A data-driven approach for on-line gas turbine combustion monitoring using classification models,2014

2. The development of an aviation fuel thermal stability test unit;Journal of Engineering for Gas Turbines and Power,1995

3. The application of open system architecture for condition based maintenance to complete IVHM,2008

4. Gas turbine fuel valve diagnostics,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3