Experimental study on tensile strength of copper microparticles filled polymer composites printed by fused deposition modelling process

Author:

Adibi Hamed,Hashemi Mohammad Reza

Abstract

Purpose The purpose of this paper is to investigate the variables of the fused deposition modelling (FDM) process and improve their effect on the mechanical properties of acrylonitrile butadiene styrene (ABS) components reinforced with copper microparticles. Design/methodology/approach In the experimental approach, after drying the ABS granule, it was mixed with copper microparticles (at concentrations of 5%, 8% and 10%) in a single screw extruder to fabricate pure ABS and composite filaments. Then, by making the components by the FDM process, the tensile strength of the parts was determined through tensile strength tests. Taguchi DOE method was used to design the experiments in which nozzle temperature, filling pattern and layer thickness were the design variables. The analysis of variance (ANOVA) and signal-to-noise analysis were conducted to determine the effectiveness of each FDM process parameter on the ultimate tensile strength of printed samples. Following that, the main effect analysis was used to optimize each process parameter for pure ABS and its composite at different copper contents. Findings The study allows the layer thickness and filling pattern had the highest effects on the ultimate tensile strength of the printed materials (pure and composite) in the FDM process. Moreover, the results show that the ultimate tensile strength of the ABS composite containing 5% copper was nearly 12.3% higher than the pure ABS part. According to validation tests, the maximum error of experiments was about 0.96%. Originality/value In this paper, the effect of copper microparticles (as filling agent) was investigated on the ultimate tensile strength of printed ABS material during the FDM process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference25 articles.

1. Effect of extrusion temperature on fused filament fabrication parts orthotropic behaviour;Rapid Prototyping Journal,2019

2. Mechanical properties of PLA-graphene filament for FDM 3D printing;The International Journal of Advanced Manufacturing Technology,2019

3. An experimental methodology to analyse the structural behaviour of FDM parts with variable process parameters;Rapid Prototyping Journal,2020

4. Novel procedure for laboratory scale production of composite functional filaments for additive manufacturing;Materials Today Communications,2020

5. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM;Polymer Testing,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3