Author:
Montani Marco,Demir Ali Gökhan,Mostaed Ehsan,Vedani Maurizio,Previtali Barbara
Abstract
Purpose
This paper aims to investigate the processability by selective laser melting (SLM) of materials of potential interest for innovative biodegradable implants, pure Fe and pure Zn. The processability of these materials is evaluated with a more established counterpart in permanent implants, stainless steel. In particular, the processing conditions were studied to reduce porosity due to incomplete fusion of the powder.
Design/methodology/approach
In the first phase of the experiments, SLM of AISI 316L was studied through design of experiments method. The study was used to identify the significant parameters in the experimental range and estimate the fluence ranges for pure Fe and pure Zn using the lumped heat capacity model. In the second phase, SLM of pure Fe and pure Zn were studied using estimated fluence ranges. In the final phase, best conditions were characterized for mechanical properties.
Findings
The results showed that complete melting of AISI 316L and pure Fe could be readily achieved, whereas laser melting generated a foam-like porous structure in Zn samples. The mechanical properties of laser melt implant materials were compared to as-cast and rolled counterparts. Laser melted AISI 316L showed superior mechanical performance compared to as-cast and rolled material, whereas Fe showed mechanical performance similar to rolled mild steel. Despite 12 per cent apparent porosity, laser melted Zn exhibited superior mechanical properties compared to as-cast and wrought material because of reduced grain size.
Originality/value
The paper provides key processing knowledge on the SLM processability of new biodegradable metals, namely, pure Fe, which has been studied sparingly, and pure Zn, on which no previous work is available. The results prefigure the production of new biodegradable metallic implants with superior mechanical properties compared to their polymeric counterparts and with improved degradation rates compared to magnesium alloys, the reference material for biodegradable metals.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献