A new approach to investigate conductive anodic filament (CAF) formation

Author:

Zou Ling Chunxian,Hunt Chris

Abstract

Purpose – This paper aims to describe the development of an approach that uses a flexible substrate to investigate the mechanism of conductive anodic filament (CAF) growth and effect of different material and manufacturing variables. Design/methodology/approach – A new approach using a simulated test vehicle (STV) has been developed to study the CAF phenomena. The STV can be easily built under controlled conditions in the laboratory using different glass fibres and resin powder to investigate the effect of different variables separately on CAF. The advantage of the STV is that CAF can be formed in relatively short period in a controlled way, and CAF growth can be easily identified using a back-lighting under a microscope due to the thin flex material used as the test sample. Findings – STV has been used to investigate a number of effects on CAF formation: different glass fibres, reflow process, acid contamination in drilled holes, desmear process and glass bundle size. The results demonstrate that for finished fibres acid contamination (plating solution) at the electrode was necessary for CAF formation. However, for unfinished glass fibres (loom state and heat cleaned) CAF can be formed without acid contamination. The reflow process significantly increases CAF formation. Running an aggressive desmear process and using large glass fibre bundle also increased CAF formation. Originality/value – This new approach will be of benefit for printed circuit board (PCB) supplier to evaluate CAF performance on different resin systems and glass fibres to provide high CAF resistance quality PCBs. The test period (168 hours) would be much shorter than the traditional CAF testing (1,000 hours).

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3