Author:
Kumar Sathish,Kuzichkin Oleg R.,Siddiqi Ahmed Faisal,Pustokhina Inna,Krasnopevtsev Aleksandr Yu
Abstract
Purpose
This study aims to investigate simultaneous power and thermal loading.
Design/methodology/approach
Finite element method simulations coupled with experiments.
Findings
The effects of power cycling have been determined.
Originality/value
This paper aims to testify the combined effects of thermal and power cycling loads on the reliability of solder ball joints with barrel- and hourglass-type geometries in an electronic system. The finite element simulation outcomes showed that the maximum strain energy was accumulated at the edges of barrel-type solder, whereas the hourglass-type was vulnerable at the necking side. It was also found that the hourglass-type solder showed a reliable behavior when the sole thermal cycling was exerted to the electronic system, whereas the barrel-type solder was a better choice under simultaneous application of thermal and power loadings. The experimental results also confirmed the finite element simulation and indicated that the solder joint reliability strongly depends on the geometry of interconnection in different operating conditions. An extensive discussion was presented to shed light on the paramount importance of combined thermal/power cycling on the reliability of solder joints.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献