Are we looking in the right place? Housing search mismatches: evidence from Greater Manchester in the UK

Author:

Doan Le-Vinh-LamORCID,Rae Alasdair

Abstract

PurposeWith access to the large-scale search data from Rightmove plc, the paper firstly indicated the possibility of using user-generated data from online property portals to predict housing market activities and secondly embraced a GIS approach to explore what people search for housing and what they chose and investigated the issue of mismatch between search patterns and revealed patterns. Based on the analysis, the paper contributes a visual GIS-based approach which may help planners and designers to make more informed decisions related to new housing supply, particularly where to build, what to build and how many to build.Design/methodology/approachThe paper used the 2013 housing search data from Rightmove and the 2013 price data from Land Registry with transactions made after the search period and embraced a GIS approach to explore the potential housing demand patterns and the mismatch between searches and sales. In the analysis, the paper employed the K-means approach to group prices into five levels and used GIS software to draw maps based on these price levels. The paper also employed a simple analysis of linear regression based on the coefficient of determination to investigate the relationship between online property views and values of house sales.FindingsThe result indicated the strong relationship between online property views and the values of house sales, implying the possibility of using search data from online property portals to predict housing market activities. It then explore the spatial housing demand patterns based on searches and showed a mismatch between the spatial patterns of housing search and actual moves across submarkets. The findings may not be very surprising but the main objective of the paper is to open up a potentially useful methodological approach which could be extended in future research.Research limitations/implicationsIt is important to identify search patterns from people who search with the intention to buy houses and from people who search with no intention to purchase properties. Rightmove data do not adequately represent housing search activity, and therefore more attention should be paid to this issue. The analysis of housing search helps us have a better understanding of households' preferences to better estimate housing demand and develop search-based prediction models. It also helps us identify spatial and structural submarkets and examine the mismatches between current housing stock and housing demand in submarkets.Social implicationsThe GIS approach in this paper may help planners and designers better allocate land resources for new housing supply based on households' spatial and structural preferences by identifying high and low demand areas with high searches relative to low housing stocks. Furthermore, the analysis of housing search patterns helps identify areas with latent demand, and when combined with the analysis of transaction patterns, it is possible to realise the areas with a lack of housing supply relative to excess demand or a lack of latent demand relative to the housing stock.Originality/valueThe paper proves the usefulness of a GIS approach to investigate households' preferences and aspirations through search data from online property portals. The contribution of the paper is the visual GIS-based approach, and based on this approach the paper fills the international knowledge gap in exploring effective approaches to analysing user-generated search data and market outcome data in combination.

Publisher

Emerald

Subject

Urban Studies,Geography, Planning and Development,Architecture

Reference59 articles.

1. Tukey's honestly significant difference (HSD) test;Encyclopedia of Research Design,2010

2. Determinants of buyer search in a housing market;Real Estate Economics,1997

3. Trend-spotting in the housing market;Cityscape,2016

4. Forecasting residential real estate price changes from online search activity;Journal of Real Estate Research,2013

5. New insights into rental housing markets across the United States: web scraping and analyzing craigslist rental listings;Journal of Planning Education and Research,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3