A comparative study of heuristic algorithms to solve maintenance scheduling problem

Author:

Asif Raza Syed,Mustafa Al‐Turki Umar

Abstract

PurposeThe purpose of this paper is to compare the effectiveness of two meta‐heuristics in solving the problem of scheduling maintenance operations and jobs processing on a single machine.Design/methodology/approachThe two meta‐heuristic algorithms, tabu search and simulated annealing are hybridized using the properties of an optimal schedule identified in the existing literature to the problem. A lower bound is also suggested utilizing these properties.FindingIn a numerical experimentation with large size problems, the best‐known heuristic algorithm to the problem is compared with the tabu search and simulated annealing algorithms. The study shows that the meta‐heuristic algorithms outperform the heuristic algorithm. In addition, the developed meta‐heuristics tend to be more robust against the problem‐related parameters than the existing algorithm.Research limitations/implicationsA future work may consider the possibility of machine failure along with the preventive maintenance. This relaxes the assumption that the machine cannot fail but it is rather maintained preventively. The multi‐criteria scheduling can also be considered as an avenue of future work. The problem can also be considered with stochastic parameters such that the processing times of the jobs and the maintenance related parameters are random and follow a known probability distribution function.Practical implicationsThe usefulness of meta‐heuristic algorithms is demonstrated for solving a large scale NP‐hard combinatorial optimization problem. The paper also shows that the utilization of the directed search methods such as hybridization could substantially improve the performance of a meta‐heuristic.Originality/valueThis research highlights the impact of utilizing the directed search methods to cause hybridization in meta‐heuristic and the resulting improvement in their performance for large‐scale optimization.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3