Using CFD model of furnace for improvement of the quality of alumina-containing sinter

Author:

V. Aleksandrov Alexander,V. Aleksandrov Valera

Abstract

Purpose – The purpose of the study is to improve the quality of alumina-containing sinter produced in a rotary kiln. Simulating sintering furnace assessment of technical solutions aimed at creating optimal phase composition of clinker. Design/methodology/approach – The computer model of the sintering furnace is developed. Influence of characteristics of material streams on thermal processes in the furnace was considered. Balance of energy, including heat conductivity, convection and radiant heat exchange has been solved in a stable state. Between actual and calculated variables of work of the furnace, good correlation was observed. Findings – The evaluation of the effect of increasing primary air and fuel burner extension to changes in temperature of the material. The modeling found that the most effective solution to reduce the temperature of the sinter is lengthening fuel burner to 5 m. Practical implications – The model can be applied to analyze and optimize the alteration of temperatures of materials and gases in an industrial furnace under various conditions. Originality/value – The article provides new information for specialists in the production of alumina. For the first time shows the influence of cooling conditions on the alumina-containing sinter quality. According to the results of computer modeling, it has been established that for creating of optimal cooling conditions of the sinter in the furnace, the length of coal burner must be not less than 5 m.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of the process approach as a methodological basis for formation of a unified network technological process of railway transportation;2ND INTERNATIONAL CONFERENCE & EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022);2023

2. Biomass pyrolysis modeling of systems at laboratory scale with experimental validation;International Journal of Numerical Methods for Heat & Fluid Flow;2018-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3