Bi-objective optimization-based multi-criteria decision-making framework for disassembly line balancing and employee assignment problem

Author:

Deniz NurcanORCID,Ozcelik FeristahORCID

Abstract

PurposeAlthough disassembly balancing lines has been studied for over two decades, there is a gap in the robotic disassembly. Moreover, combination of problem with heterogeneous employee assignment is also lacking. The hazard related with the tasks performed on disassembly lines on workers can be reduced by the use of robots or collaborative robots (cobots) instead of workers. This situation causes an increase in costs. The purpose of the study is to propose a novel version of the problem and to solve this bi-objective (minimizing cost and minimizing hazard simultaneously) problem.Design/methodology/approachThe epsilon constraint method was used to solve the bi-objective model. Entropy-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization methods for Enrichment Evaluation (PROMETHEE) methods were used to support the decision-maker. In addition, a new criterion called automation rate was proposed. The effects of factors were investigated with full factor experiment design.FindingsThe effects of all factors were found statistically significant on the solution time. The combined effect of the number of tasks and number of workers was also found to be statistically significant.Originality/valueIn this study, for the first time in the literature, a disassembly line balancing and employee assignment model was proposed in the presence of heterogeneous workers, robots and cobots to simultaneously minimize the hazard to the worker and cost.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3