Abstract
Benford's Law is an empirical observation about the frequency of digits in a variety of naturally occurring data sets. Auditors and forensic scientists have used Benford's Law to detect erroneous data in accounting and legal usage. One well-known limitation is that Benford's Law fails when data have clear minimum and maximum values. Many kinds of education data, including assessment scores, typically include hard maximums and therefore do not meet the parametric assumptions of Benford's Law. This paper implements a transformation procedure which allows for assessment data to be compared to Benford's Law. As a case study, a data quality assessment of oral language scores from the Early Childhood Longitudinal Study, Kindergarten (ECLS-K) study is used and higher risk data segments detected. The same method could be used to evaluate other concerns, such as test fraud, or other bounded datasets.
Reference40 articles.
1. On the use of Benford's Law to detect JPEG biometric data tampering;J Inform Secur,2017
2. Distribution of most significant digit in certain functions whose arguments are random variables;Sankhya Ser. B,1968
3. The frequency of arithmetic facts in elementary texts: addition and multiplication in Grades 1-6;J Res Math Educ,1995
4. Patterns in listing of failure-rate and MTTF values and listings of other data;IEEE Trans Reliab,1982
5. The law of anomalous numbers;Proc Am Philos Soc,1938