Deploying ecosystem services to develop sustainable energy landscapes: a case study from the Netherlands

Author:

Picchi Paolo,Verzandvoort Simone,Geneletti Davide,Hendriks Kees,Stremke Sven

Abstract

PurposeThe transition to a low carbon future is an emerging challenge and requires the planning and designing of sustainable energy landscapes – landscapes that provide renewable energy while safeguarding the supply of other ecosystem services. The aim of this paper is to present the application of an ecosystem services trade-off assessment in the development of sustainable energy landscapes for long-term strategic planning in a case study in Schouwen-Duivenland, The Netherlands.Design/methodology/approachThe application consists in three activities: in (1) stakeholder mapping hot spots of ecosystem services and renewable energy technologies in a workshop, (2) landscape design principles being discussed by a focus group, (3) experts gathering the information and proceeding with an assessment of the potential synergies and trade-offs.FindingsThe case study indicates that (1) deploying the ecosystem services framework in planning and design can enhance the development of sustainable energy landscapes, (2) diversified and accurate spatial reference systems advance the trade-off analysis of both regulating and cultural ecosystem services and (3) the involvement of local stakeholders can advance the trade-off analysis and, ultimately, facilitates the transition to a low-carbon future with sustainable energy landscapes.Originality/valueThe originality of this research lies in the creation of an approach for the deployment of ecosystem services in the planning and design of energy transition. This is useful to advance energy transition by enhancing research methods, by providing methods useful for planners and designers and by supporting communities pursuing energy self-sufficiency in a sustainable manner.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3