Resource deployment under consideration of conflicting needs in times of river floods

Author:

Berariu Romana,Fikar Christian,Gronalt Manfred,Hirsch Patrick

Abstract

Purpose The purpose of this paper is to present a system dynamics (SD) model that allows one to simulate resource deployment to fulfill increasing needs for commodities such as food and other consumables during disaster situations. The focus is on managing a suddenly increased demand (hoarding behavior) of an affected population under restricted transport conditions. The model aims to support decision makers by fostering comprehension of the systemic behavior and interdependencies of those complex settings. Design/methodology/approach Through literature review and case study analyses the SD model was established and implemented with STELLA 10.1.1. Findings The needs of relief units for response operations and supply of evacuees in the affected region result in conflicting needs under limited transport conditions during disaster situations. Therefore, uncertainties and dynamic parameters as, e.g., occurring delays, limited information, or delivery constraints and their influence on resource deployment under a sudden demand, have been identified and incorporated in this work. The authors found that an oscillating behavior within the system is possible to occur and is more intensified in case of regarding the additional needs of evacuees and relief units. Research limitations/implications Due to the high level of abstraction, it is not possible to incorporate all influencing variables in the SD model. Therefore, the authors focused on the most important ones with regard to the model objective. Practical implications To focus on awareness raising is of importance for decision makers in the context of disaster management. Furthermore, the authors found that the oscillating behavior is more irregular in case of assuming a higher increase rate of the water gauge than if a low increase rate is assumed. Originality/value To the best of the authors’ knowledge, none of the work already done refers to providing a flood-prone area with commodities under consideration of a sudden demand, by applying the SD approach. The presented model contributes on the generation of systemic insights of resource deployment under consideration of conflicting needs in times of a river flood to support decision makers in those situations.

Publisher

Emerald

Subject

Public Health, Environmental and Occupational Health,Management, Monitoring, Policy and Law,Health(social science)

Reference50 articles.

1. System dynamics modeling of reservoir operations for flood management;Journal of Computing in Civil Engineering,2000

2. Household preparedness for the aftermath of hurricanes in Florida;Applied Geography,2011

3. Facility location in humanitarian relief;International Journal of Logistics: Research and Applications,2008

4. Last mile distribution in humanitarian relief;Journal of Intelligent Transportation Systems,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3