Effect of carbonization on the surface and influence on heavy metal removal by water hyacinth stem-based carbon

Author:

Tinega Joseph NyamokoORCID,Warui Charles Mwaura

Abstract

PurposeThe aim of this study is to examine the effect of carbonization on the surface and its influence on heavy metal removal by water hyacinth based carbon.Design/methodology/approachDried water hyacinth stem was used as precursor to prepare carbon based adsorbent by pyrolysis method. The adsorbent proximate (ash, volatile matter and fixed carbon) and elemental (carbon hydrogen nitrogen sulfur) composition, surface area, pore size distribution, surface chemistry was examined and compared.FindingsThe results demonstrated that through carbonization in comparison to dried water hyacinth stem, it increased the surface area (from 58.46 to 328.9 m2/g), pore volume (from 0.01 to 0.07 cc/g), pore size (from 1.44 to 7.557 Å) thus enhancing heavy metal adsorption. The metal adsorption capacity of Cd, Pb and Zn was measured and analyzed through induced coupled plasma-mass spectrometer. At metal concentration of 0.1 mg/l adsorption rate for Cd, Pb and Zn was 99% due to increased large surface area, coupled with large pore size and volume. Furthermore, the adsorbent surface hydroxyl group (OH) enhanced adsorption of positively charged metal ions through electrostatic forces.Practical implicationsIt is presumed that not only adsorption with synthetic wastewater but real wastewater samples should be examined to ascertain the viability of adsorbent for commercial application.Originality/valueThere are little or scanty data on the effects of carbonization on water hyacinth stem based carbon and subsequent effects on heavy metal removal in effluents.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health

Reference89 articles.

1. A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions;Frontiers of Chemical Science and Engineering,2020

2. Water hyacinth stems a potential natural adsorbent for the adsorption of acid green 20 dye;Environmental science,2010

3. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions;Journal of Environmental Management,2014

4. Bioabsorbent of chromium, cadmium and lead from industrial waste water by waste plant;Journal of Pharmaceutical Sciences and Research,2018

5. Removal of heavy metals and antibiotics from treated sewage effluent by bacteria;Clean Technologies and Environmental Policy,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3