Office property price index forecasting using neural networks

Author:

Xu Xiaojie,Zhang Yun

Abstract

Purpose The Chinese housing market has witnessed rapid growth during the past decade and the significance of housing price forecasting has undoubtedly elevated, becoming an important issue to investors and policymakers. This study aims to examine neural networks (NNs) for office property price index forecasting from 10 major Chinese cities for July 2005–April 2021. Design/methodology/approach The authors aim at building simple and accurate NNs to contribute to pure technical forecasts of the Chinese office property market. To facilitate the analysis, the authors explore different model settings over algorithms, delays, hidden neurons and data-spitting ratios. Findings The authors reach a simple NN with three delays and three hidden neurons, which leads to stable performance of about 1.45% average relative root mean square error across the 10 cities for the training, validation and testing phases. Originality/value The results could be used on a standalone basis or combined with fundamental forecasts to form perspectives of office property price trends and conduct policy analysis.

Publisher

Emerald

Subject

Economics and Econometrics,Finance,Accounting,Business and International Management,Building and Construction

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3