Modelling concrete slabs subjected to localised fire action with OpenSees

Author:

Orabi Mhd Anwar,Qiu JinORCID,Jiang LimingORCID,Usmani AsifORCID

Abstract

PurposeReinforced concrete slabs in fire have been heavily studied over the last three decades. However, most experimental and numerical work focuses on long-duration uniform exposure to standard fire. Considerably less effort has been put into investigating the response to localised fires that result in planarly non-uniform temperature distribution in the exposed elements.Design/methodology/approachIn this paper, the OpenSees for Fire framework for modelling slabs under non-uniform fire exposure is presented, verified against numerical predictions by Abaqus and then validated against experimental tests. The thermal wrapper developed within OpenSees for Fire is then utilised to apply localised fire exposure to the validated slab models using the parameters of an experimentally observed localised fire. The effect of the smoke layer is also considered in this model and shown to significantly contribute to the thermal and thus thermo-mechanical response of slabs. Finally, the effect of localised fire heat release rate (HRR) and boundary conditions are studied.FindingsThe analysis showed that boundary conditions are very important for the response of slabs subject to localised fire, and expansive strains may be accommodated as deflections without severely damaging the slab by considering the lateral restraint.Originality/valueThis work demonstrates the capabilities of OpenSees for Fire in modelling structural behaviours subjected to non-uniform fire conditions and investigates the damage pattens of flat slabs exposed to localised fires. It is an advancing step towards understanding structural responses to realistic fires.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference60 articles.

1. The effect of reinforcement ratios on composite slabs in fire;Proceedings of the Institution of Civil Engineers: Structures and Buildings,2012

2. Tensile membrane action of thin slabs exposed to thermal gradients;Journal of Engineering Mechanics,2013

3. The tensile membrane action of unrestrained composite slabs simulated under fire conditions;Engineering Structures,2000

4. Simplified and advanced analysis of membrane action of concrete slabs;ACI Structural Journal,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3