Abstract
A layered approach for identifying communities in the Web is presented and explored by applying the flake exact community identification algorithm to the UK academic Web. Although community or topic identification is a common task in information retrieval, a new perspective is developed by: the application of alternative document models, shifting the focus from individual pages to aggregated collections based upon Web directories, domains and entire sites; the removal of internal site links; and the adaptation of a new fast algorithm to allow fully‐automated community identification using all possible single starting points. The overall topology of the graphs in the three least‐aggregated layers was first investigated and found to include a large number of isolated points but, surprisingly, with most of the remainder being in one huge connected component, exact proportions varying by layer. The community identification process then found that the number of communities far exceeded the number of topological components, indicating that community identification is a potentially useful technique, even with random starting points. Both the number and size of communities identified was dependent on the parameter of the algorithm, with very different results being obtained in each case. In conclusion, the UK academic Web is embedded with layers of non‐trivial communities and, if it is not unique in this, then there is the promise of improved results for information retrieval algorithms that can exploit this additional structure, and the application of the technique directly to partially automate Web metrics tasks such as that of finding all pages related to a given subject hosted by a single country's universities.
Subject
Library and Information Sciences,Information Systems
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献