Spectral dimensionality reduction for quantitative analysis of cotton content of blend fabrics

Author:

Sun Xudong,Zhu Ke

Abstract

Purpose The purpose of this paper is to initiate investigations to develop near infrared (NIR) spectroscopy coupled with spectral dimensionality reduction and multivariate calibration methods to rapidly measure cotton content in blend fabrics. Design/methodology/approach In total, 124 and 41 samples were used to calibrate models and assess the performance of the models, respectively. The raw spectra are transformed into wavelet coefficients. Multivariate calibration methods of partial least square (PLS), extreme learning machine (ELM) and least square support vector machine (LS-SVM) were employed to develop the models using 100 wavelet coefficients. Through comparing the performance of PLS, ELM and LS-SVM models with new samples, the optimal model of cotton content was obtained with the LS-SVM model. Findings The correlation coefficient of prediction (rp) and root mean square errors of prediction were 0.99 and 4.37 percent, respectively. The results suggest that NIR spectroscopy, combining with the LS-SVM method, has significant potential to quantitatively analyze cotton content in blend fabrics. Originality/value It may have commercial and regulatory potential to avoid time-consuming work, costly and laborious chemical analysis for cotton content in blend fabrics.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3