Performance of TV programs: a robust MCDM approach

Author:

Andrade Liz Hassad deORCID,Antunes Jorge Junio Moreira,Wanke PeterORCID

Abstract

PurposeThe aim of this paper is to provide an approach to analyze the performance of TV programs and to identify what can be done to improve them.Design/methodology/approachThe Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), the Ng-model, Grey relational analysis (GRA), and principal component analysis (PCA) were applied to evaluate the programs, using audience, share, and duration as the performance criteria.FindingsBy comparing TOPSIS to the Ng-model, PCA, and GRA, we verified that SVD and bootstrap SVD TOPSIS provide a good balance between equal-weights TOPSIS and the other models. This is because SVD and bootstrap SVD TOPSIS break down the data to a higher degree, but are less impacted by outliers compared to the long tail models.Practical implicationsTo determine which TV programs should be replaced or modified is a complex decision that has not been addressed in the literature. The advantage of using a multi-criteria decision-making (MCDM) approach is that analysts can choose as many criteria as they want to rank TV programs, rather than relying on a single criterion (e.g., audience, share, target rating point).Originality/valueThis work represents the first time that robust MCDM methodology is applied to an audience data set to analyze the performance of TV programs and to identify what can be done to improve them. This study shows the application of a detailed methodology that is useful for the improvement of TV programs and other entertainment industry content.

Publisher

Emerald

Subject

Business and International Management,Strategy and Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3