Abstract
An improved velocity‐space carrier transport model is presented, based on a direct solution of the Boltzmann Transport Equation. This model attempts to achieve the computational efficiency required for device simulation, while still solving for the distribution function itself. This preserves critical fine structure effects due a non‐ideal band structure and forward scattering mechanisms. The model includes a numerically efficient representation of three dimensional k‐space formulated around a 1D velocity‐space variable, and the particle energy. The number of empirical parameters in the model is reduced to a single constant per scattering mechanism. A physically intuitive solution algorithm is developed which repeatedly shifts and shapes the estimate of the distribution until convergence. Results are presented for the steady‐state homogeneous case in silicon and GaAs, which are of comparable computational cost as drift‐diffusion simulations.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications