A structured framework for performance optimization using JBLTO, FCOPRAS and FCODAS methodologies

Author:

Gopal NandORCID,Panchal Dilbagh

Abstract

PurposeThe proposed hybridized framework provides a new performance optimization-based paradigm for analysing the failure behaviour of paneer unit (PU) in the dairy industry.Design/methodology/approachA novel fuzzy Jaya-based Lambda–Tau Optimization (JBLTO) approach-based mathematical modelling was developed for calculating various reliability indices of the considered unit. Failure mode and effect analysis (FMEA) was carried using qualitative information gathered from system's expert opinions. Fuzzy-complex proportional assessment (FCOPRAS) approach was integrated within FMEA to recognize the most critical failure causes associated with various subsystem/components.FindingsThe availability of the unit falls by 0.053% as the uncertainty level increases from ±15 to ±25% and further decreases to 0.323% as the uncertainty level increases from ±25 to ±60%. Failure causes, namely wearing in gears of gearbox (MST4), an impeller's cavitation and/or corrosion (CFP4), winding failure of electric motor (WS9), were recognized as the most critical failure causes with FCOPRAS final performance scores of 100, 100 and 100 and fuzzy combinative distance-based assessment (FCODAS) resultant assessment score of 0.5997, 1.1898 and 1.6135.Originality/valueJBLTO approach-based reliability results were compared with traditional particle swarm optimization-based Lambda–Tau (PSOBLT) and traditional fuzzy Lambda–Tau (FLT) approaches for confirming the downward trend in the system's availability. The ranking results of qualitative analysis are compared with the implementation of FCODAS technique. Sensitivity analysis was executed to evaluate the robustness of the proposed hybridized framework.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Safety, Risk, Reliability and Quality

Reference51 articles.

1. Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA;Renewable Energy,2020

2. Application of multi-failure mode reliability-based particle swarm optimization algorithm;Computers and Industrial Engineering,2021

3. Global supplier selection: a fuzzy-AHP approach;International Journal of Production Research,2008

4. Dynamical contact parameter identification of spindle-holder-tool assemblies using soft computing techniques;Facta Universitatis, Series: Mechanical Engineering,2020

5. An integrated swot–fuzzy piprecia model for analysis of competitiveness in order to improve logistics performances;Facta Universitatis, Series: Mechanical Engineering,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3