Heat transfer and entropy generation in viscous-joule heating MHD microchannels flow under asymmetric heating

Author:

Tahiri Antar,Ragueb Haroun,Moussaoui Mustafa,Mansouri Kacem,Guerraiche Djemaa,Guerraiche Khelifa

Abstract

Purpose This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating. Design/methodology/approach The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (Ha = 0 ∼ 40) and Brinkman (Br = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as ϕ. Findings The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether Br equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and η (a dimensionless parameter emerging from the formulation) obtained for ϕ = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region. Originality/value The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3