Author:
Jiwari Ram,Alshomrani Ali Saleh
Abstract
Purpose
The main aim of the paper is to develop a new B-splines collocation algorithm based on modified cubic trigonometric B-spline functions to find approximate solutions of nonlinear parabolic Burgers’-type equations with Dirichlet boundary conditions.
Design/methodology/approach
A modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and an algorithm is developed with the help of modified cubic trigonometric B-spline functions. The proposed algorithm reduced the Burgers’ equations into a system of first-order nonlinear ordinary differential equations in time variable. Then, strong stability preserving Runge-Kutta 3rd order (SSP-RK3) scheme is used to solve the obtained system.
Findings
A different technique based on modified cubic trigonometric B-spline functions is proposed which is quite different from to the schemes developed in Abbas et al. (2014) and Nazir et al. (2016), and the developed algorithms are free from linearization process and finite difference operators.
Originality/value
To the best knowledge of the authors, this technique is novel for solving nonlinear partial differential equations, and the new proposed technique gives better results than the results discussed in Ozis et al. (2003), Kutluay et al. (1999), Khater et al. (2008), Korkmaz and Dag (2011), Kutluay et al. (2004), Rashidi et al. (2009), Mittal and Jain (2012), Mittal and Jiwari (2012), Mittal and Tripathi (2014), Xie et al. (2008) and Kadalbajoo et al. (2005).
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献