Author:
Joachimiak Magda,Ciałkowski Michał,Frąckowiak Andrzej
Abstract
Purpose
The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with the target temperature on three boundaries and, additionally, on one of the boundaries, the heat flux distribution was selected. The purpose of consideration was to determine the distribution of temperature on a section of the boundary of the investigated domain (boundary Γ1) and find proper method for the problem regularization.
Design/methodology/approach
The solution of the direct and the inverse (Cauchy-type) problems for the Laplace’s equation is presented in the paper. The form of the solution is noted as the linear combination of the Chebyshev polynomials. The collocation method in which collocation points had been determined based on the Chebyshev nodes was applied. To solve the Cauchy problem, the minimum of functional describing differences between the target and the calculated values of temperature and the heat flux on a section of the domain’s boundary was sought. Various types of the inverse problem regularization, based on Tikhonov and Tikhonov–Philips regularizations, were analysed. Regularization parameter α was chosen with the use of the Morozov discrepancy principle.
Findings
Calculations were performed for random disturbances to the heat flux density of up to 0.01, 0.02 and 0.05 of the target value. The quality of obtained results was next estimated by means of the norm. Effect of the disturbance to the heat flux density and the type of regularization on the sought temperature distribution on the boundary Γ1 was investigated. Presented methods of regularization are considerably less sensitive to disturbances to measurement data than to Tikhonov regularization.
Practical implications
Discussed in this paper is an example of solution of the Cauchy problem for the Laplace’s equation in the rectangular domain that can be applied for determination of the temperature distribution on the boundary of the heated element where it is impossible to measure temperature or the measurement is subject to a great error, for instance on the inner wall of the boiler. Authors investigated numerical examples for functions with singularities outside the domain, for which values of gradients change significantly within the calculation domain what corresponds to significant changes in temperature on the wall of the boiler during the fuel combustion.
Originality/value
In this paper, a new method for solving the Cauchy problem for the Laplace’s equation is described. To solve this problem, the Chebyshev polynomials and nodes were used. Various types of regularization of this problem were considered.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献