Stable method for solving the Cauchy problem with the use of Chebyshev polynomials

Author:

Joachimiak Magda,Ciałkowski Michał,Frąckowiak Andrzej

Abstract

Purpose The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with the target temperature on three boundaries and, additionally, on one of the boundaries, the heat flux distribution was selected. The purpose of consideration was to determine the distribution of temperature on a section of the boundary of the investigated domain (boundary Γ1) and find proper method for the problem regularization. Design/methodology/approach The solution of the direct and the inverse (Cauchy-type) problems for the Laplace’s equation is presented in the paper. The form of the solution is noted as the linear combination of the Chebyshev polynomials. The collocation method in which collocation points had been determined based on the Chebyshev nodes was applied. To solve the Cauchy problem, the minimum of functional describing differences between the target and the calculated values of temperature and the heat flux on a section of the domain’s boundary was sought. Various types of the inverse problem regularization, based on Tikhonov and Tikhonov–Philips regularizations, were analysed. Regularization parameter α was chosen with the use of the Morozov discrepancy principle. Findings Calculations were performed for random disturbances to the heat flux density of up to 0.01, 0.02 and 0.05 of the target value. The quality of obtained results was next estimated by means of the norm. Effect of the disturbance to the heat flux density and the type of regularization on the sought temperature distribution on the boundary Γ1 was investigated. Presented methods of regularization are considerably less sensitive to disturbances to measurement data than to Tikhonov regularization. Practical implications Discussed in this paper is an example of solution of the Cauchy problem for the Laplace’s equation in the rectangular domain that can be applied for determination of the temperature distribution on the boundary of the heated element where it is impossible to measure temperature or the measurement is subject to a great error, for instance on the inner wall of the boiler. Authors investigated numerical examples for functions with singularities outside the domain, for which values of gradients change significantly within the calculation domain what corresponds to significant changes in temperature on the wall of the boiler during the fuel combustion. Originality/value In this paper, a new method for solving the Cauchy problem for the Laplace’s equation is described. To solve this problem, the Chebyshev polynomials and nodes were used. Various types of regularization of this problem were considered.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3