Computational fluid dynamics and laminar heat transfer of water/Cu nanofluid in ribbed microchannel with a two-phase approach

Author:

Cheloii Navid Ahmadi,Akbari Omid Ali,Toghraie Davood

Abstract

Purpose This study aims to numerically investigate the heat transfer and laminar forced and two-phase flow of Water/Cu nanofluid in a rectangular microchannel with oblique ribs with angle of attacks equal to 0-45°. This simulation was conducted in the range of Reynolds numbers of 5-120 in volume fractions of 0, 2 and 4 per cent of solid nanoparticles in three-dimensional space. Design/methodology/approach This study investigates the effect of the changes of angle of attack of rectangular rib on heat transfer and hydrodynamics of two-phase flow. This study was done in three-dimensional space and simulation was done with finite volume method. SIMPLEC algorithm and second-order discretization of equations were used to increase the accuracy of results. The usage of nanofluid, application of rips with different angles of attacks and using the two-phase mixture method is the distinction of this paper compared with other studies. Findings The results of this research revealed that the changing angle of attack of ribs is an effective factor in heat transfer enhancement. On the other hand, the existence of rib on the internal surfaces of a microchannel increases friction coefficient. By increasing the volume fraction of nanoparticles, due to the augmentation of fluid density and viscosity, the pressure drop increases significantly. For all of the angle of attacks studied in this paper, the maximum rate of performance evaluation criterion has been obtained in Reynolds number of 30 and the minimum amount of performance evaluation criterion was been obtained in Reynolds numbers of 5 and 120. Originality/value Many studies have been done in the field of heat transfer in ribbed microchannel. In this paper, the laminar flow in the ribbed microchannel Water/Cu nanofluid in a rectangular microchannel by using two-phase mixture method is numerically investigated with different volume fractions (0-4 per cent), Reynolds numbers (5-120) and angle of attacks of rectangular rib in the indented microchannel (0-45°).

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference55 articles.

1. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study;Experimental Thermal and Fluid Science,2016

2. Mechanics of saturated granular materials;International Journal of Non-Linear Mechanics,1980

3. On mechanics of incompressible multiphase suspensions;Advances in Water Resources,1987

4. A thermodynamical formulation for dispersed multiphase turbulent flows, part I: basic theory;International Journal of Multiphase Flow,1990

5. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel;Advances in Mechanical Engineering,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3