A variational approach for novel solitary solutions of FitzHugh–Nagumo equation arising in the nonlinear reaction–diffusion equation

Author:

Khan Yasir

Abstract

Purpose In the nonlinear model of reaction–diffusion, the Fitzhugh–Nagumo equation plays a very significant role. This paper aims to generate innovative solitary solutions of the Fitzhugh–Nagumo equation through the use of variational formulation. Design/methodology/approach The partial differential equation of Fitzhugh–Nagumo is modified by the appropriate wave transforms into a dimensionless nonlinear ordinary differential equation, which is solved by a semi-inverse variational method. Findings This paper uses a variational approach to the Fitzhugh–Nagumo equation developing new solitary solutions. The condition for the continuation of new solitary solutions has been met. In addition, this paper sets out the Fitzhugh–Nagumo equation fractal model and its variational principle. The findings of the solitary solutions have shown that the suggested method is very reliable and efficient. The suggested algorithm is very effective and is almost ideal for use in such problems. Originality/value The Fitzhugh–Nagumo equation is an important nonlinear equation for reaction–diffusion and is typically used for modeling nerve impulses transmission. The Fitzhugh–Nagumo equation is reduced to the real Newell–Whitehead equation if β = −1. This study provides researchers with an extremely useful source of information in this area.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference25 articles.

1. A modification of He's variational approach using the least square method to nonlinear oscillators;Journal of Low Frequency Noise Vibration and Active Control,2019

2. Multidimensional nonlinear diffusions arising in population genetics;Advances in Mathematics,1978

3. Perturbation analysis of an approximation to the Hodgkin-Huxley theory;Quarterly of Applied Mathematics,1975

4. Impulses and physiological states in theoretical models of nerve membrane;Biophysical Journal,1961

5. Variational principles for some nonlinear partial differential equations with variable coefficients;Chaos Solitons Fractals,2004

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3