Author:
Du Wei,Luo Lei,Wang Songtao,Liu Jian,Sunden Bengt Ake
Abstract
Purpose
The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to decrease the temperature near the trailing region of gas turbine.
Design/methodology/approach
Based on the geometric similarity, a simplified geometric model is used. The k − ω turbulence model is used to close the Navier–Stokes equations. Five rib shapes (one rectangular rib, two arched ribs and two trapezoid ribs) and five Reynolds numbers (10,000 to 50,000) are considered. The Nusselt number, flow structure and friction factor are analyzed.
Findings
Nusselt number is tightly related to the rib shape in the labyrinth channel. The different shapes of the ribs result in different horseshoe vortex and wake region. In general, the arched rib brings the highest Nusselt number and friction factor. The Nusselt number is increased by 15.8 per cent compared to that of trapezoidal ribs. High Nusselt number is accompanied by the high friction factor in a labyrinth channels. The friction factor is increased by 64.6 per cent compared to rectangular ribs. However, the rib shape has a minor effect on the overall thermal performance.
Practical implications
This study is useful to protect the trailing region of advanced gas turbine.
Originality/value
This paper presents the flow structure and heat transfer characteristics in a labyrinth channel with different rib shapes.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献