Numerical investigations of unsteady passing wake effects on turbine blade tip aerothermal performance with different tip clearances

Author:

Zhang Bo,Qiang Xiaoqing,Lu Shaopeng,Teng Jinfang

Abstract

Purpose The purpose of this paper is to numerically investigate the effect of guide vane unsteady passing wake on the rotor blade tip aerothermal performance with different tip clearances. Design/methodology/approach The geometry and flow conditions of the first stage of GE-E3 high-pressure turbine have been used to obtain the blade tip three-dimensional heat transfer characteristics. The first stage of GE-E3 high-pressure turbine has 46 guide vanes and 76 rotor blades, and the ratio of the vane to the blade is simplified to 38:76 to compromise the computational resources and accuracy. Namely, each computational domain comprises of one guide vane passage and two rotor blade passages. The investigations are conducted at three different tip gaps of 1.0, 1.5 and 2.0 per cent of the average blade span. Findings The results show that the overall discrepancy of the heat transfer coefficient between steady results and unsteady time-averaged results is quite small, but the dramatic growth of the instantaneous heat transfer coefficient along the pressure side is in excess of 20 per cent. The change of the aerothermal performance is mainly driven by turbulence-level fluctuations of the unsteady flow field within gap regions. In addition, the gap size expansion has a marginal impact on the variation ratio of tip unsteady aerothermal performances, even though it has a huge influence on the leakage flow state within the tip region. Originality/value This paper emphasizes the change ratio of unsteady instantaneous heat transfer characteristics and detailed the mechanism of blade tip unsteady heat transfer coefficient fluctuations, which provide some guidance for the future blade tip design and optimization.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference29 articles.

1. Effects of unsteadiness due to wake passing on rotor blade heat transfer,2006

2. Unsteady turbine blade and tip heat transfer due to wake passing,2007

3. Unsteady analysis of blade and tip heat transfer as influenced by the upstream momentum and thermal wakes;Journal of Turbomachinery,2010

4. Effects of tip clearance and casing recess on heat transfer and stage efficiency in axial turbines;Journal of Turbomachinery,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3