Effects of magnetic field on the liquid gallium thermosyphon fluid flow; a numerical study

Author:

Teimouri Hamid,Behzadmehr Amin

Abstract

Purpose This paper aims to numerically study the laminar natural convection in a thermosyphon filled with liquid gallium exposed to a constant magnetic field. The left wall of the thermosyphon is at an uniformed hot temperature, whereas the right wall is at a uniform cold temperature. The top and bottom walls are considered to be adiabatic. All walls are electrically insulated. The effects of Hartmann number, in a wide range of Rayleigh number and aspect ratio combinations, on the natural convection throughout the thermosyphon, are investigated and discussed. Furthermore, different forces that influence the natural flow structure are studied. Design/methodology/approach A Fortran code is developed based on the finite volume method to solve the two-dimensional unsteady governing equations. Findings Imposing a magnetic field improves the stability of the fluid flow and thus reduces the Nusselt number. For a given Hartmann and Rayleigh number, there is an optimum aspect ratio for which the average velocity becomes maximum. Research limitations/implications This paper is a two-dimensional investigation. Originality/value To the best of the authors’ knowledge, the effect of the magnetic field on natural convection of liquid gallium in the considered thermosyphon has not been studied numerically in detail. The results of this paper would be helpful in considering the application of the low Prandtl number’s liquid metals in thermosyphon MHD generators and certain cooling devices.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference38 articles.

1. MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure;International Journal of Numerical Methods for Heat and Fluid Flow,2018

2. MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material;International Journal of Numerical Methods for Heat and Fluid Flow,2018

3. Effect of time marching schemes on predictions of oscillatory natural convection in fluids of low Prandtl number;Numerical Heat Transfer, Part A: Applications,1996

4. Stability characteristics of a single-phase free convection loop;Journal of Fluid Mechanics,1975

5. Natural convection in a square cavity: a comparison exercise;International Journal for Numerical Methods in Fluids,1983

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling consolidation of wax deposition for progressive cavity pump using computational fluid dynamics;Engineering Science and Technology, an International Journal;2023-05

2. Deep neural network prediction for effective thermal conductivity and spreading thermal resistance for flat heat pipe;International Journal of Numerical Methods for Heat & Fluid Flow;2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3