Numerical simulation of ophthalmic laser surgeries by a local thermal non-equilibrium two-temperature model

Author:

Chen Bin,Zhao Yibo,Li Dong

Abstract

Purpose This paper aims to understand the laser–tissue interaction mechanism during ophthalmic laser surgeries through numerical analysis. The influence of laser parameters and the multipulse technique were investigated. Design/methodology/approach The ocular fundus was simplified as a multilayered homogenous medium model. Afterward, the multilayer Monte Carlo method was used to simulate the propagation and energy deposition of laser light, and a local thermal non-equilibrium two-temperature model was established to simulate the temperature variation of chromophores and surrounding tissue with different laser wavelength. Findings Through the model, the selective heating of chromophore (melanin and blood vessels) was clearly illustrated: 1) neglecting the laser energy absorbance by blood in the traditional model will cause significant errors in temperature calculation; 2) the non-thermal equilibrium heat transfer model was needed to obtain an accurate description of the thermal process when the dimensionless pulse width (tp*) is <105. For 532 nm Argon laser, the optimize tp* is around 105 and the appropriate energy density is 5 J/cm2; 3) multipulse technique makes the energy more concentrated within the melanin, thereby reducing the thermal damage in surrounding tissue, with most appropriate pulse number and duty cycle is 10 and 1/10. Originality/value Taking the blood absorption into account, the different temperature variations of melanin/vessels and surrounding tissue caused by the selective photo-thermolysis were simulated successfully. By understanding the mechanism of laser therapy, laser parameters and multipulse technique are suggested to improve the clinical results.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference25 articles.

1. A comparative study of thermal effects of 3 types of laser in eye: 3d simulation with bioheat equation;Journal of Thermal Biology,2015

2. Selective Photother-Molysis precise microsurgery by selective absorption of pulsed radiation;Science,1983

3. Simplified finite element algorithm to solve conjugate heat and mass transfer in porous medium;International Journal of Numerical Methods for Heat and Fluid Flow,2017

4. Epithelial damage in rabbit corneas exposed to CO2 laser radiation;Health Physics,1989

5. A literature review and novel theoretical approach on the optical properties of whole blood;Lasers in Medical Science,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3