A New Approach to the Study of the Intrinsic Ageing Kinetics of Thick Film Resistors

Author:

De Schepper L.,De Ceuninck W.,Stulens H.,Stals L.M.,Vanden Berghe R.,Demolder S.

Abstract

A new method of studying the accelerated ageing of interconnection materials is applied to a high‐stability thick film resistor system (the Du Pont HS‐80 system). The new method, referred to hereafter as the in‐situ method, allows measurement of the electrical resistance of a thick film resistor to a resolution of a few ppm during accelerated ageing. With the in‐situ technique, the electrical resistance measurements are performed at the elevated ageing temperature during the ageing treatment, whereas with the conventional ageing method the resistance measurements are carried out at room temperature, between subsequent annealing steps. The measuring resolution obtainable with the in‐situ method is orders of magnitude better than with the conventional method. The ageing kinetics can therefore be studied on a shorter time scale and in greater detail than with the conventional method. In this paper, the authors use the in‐situ method to study the accelerated ageing of the Du Pont HS‐80 thick film resistor system, encapsulated with a proper glaze. It will be shown that kinetics of the resistance drift observed in this system cannot be described by an Arrhenius‐type equation. The ageing data can only be interpreted in terms of a kinetic model incorporating a spectrum of activation energies for the ageing process. Such a model is given, and is shown to provide a good explanation of the observed ageing behaviour. The physical process that causes the observed ageing is most probably diffusion of silver from the contacting terminals into the amorphous matrix of the thick film resistor.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3