Rapid enhanced-DEM using Google Earth Engine, machine learning, weighted and spatial interpolation techniques

Author:

Kandil Walaa Metwally,Zarzoura Fawzi H.,Goma Mahmoud Salah,El-Mewafi Shetiwi Mahmoud El-Mewafi

Abstract

Purpose This study aims to present a new rapid enhancement digital elevation model (DEM) framework using Google Earth Engine (GEE), machine learning, weighted interpolation and spatial interpolation techniques with ground control points (GCPs), where high-resolution DEMs are crucial spatial data that find extensive use in many analyses and applications. Design/methodology/approach First, rapid-DEM imports Shuttle Radar Topography Mission (SRTM) data and Sentinel-2 multispectral imagery from a user-defined time and area of interest into GEE. Second, SRTM with the feature attributes from Sentinel-2 multispectral imagery is generated and used as input data in support vector machine classification algorithm. Third, the inverse probability weighted interpolation (IPWI) approach uses 12 fixed GCPs as additional input data to assign the probability to each pixel of the image and generate corrected SRTM elevations. Fourth, gridding the enhanced DEM consists of regular points (E, N and H), and the contour interval is 5 m. Finally, densification of enhanced DEM data with GCPs is obtained using global positioning system technique through spatial interpolations such as Kriging, inverse distance weighted, modified Shepard’s method and triangulation with linear interpolation techniques. Findings The results were compared to a 1-m vertically accurate reference DEM (RD) obtained by image matching with Worldview-1 stereo satellite images. The results of this study demonstrated that the root mean square error (RMSE) of the original SRTM DEM was 5.95 m. On the other hand, the RMSE of the estimated elevations by the IPWI approach has been improved to 2.01 m, and the generated DEM by Kriging technique was 1.85 m, with a reduction of 68.91%. Originality/value A comparison with the RD demonstrates significant SRTM improvements. The suggested method clearly reduces the elevation error of the original SRTM DEM.

Publisher

Emerald

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3