Analyzing the impact of TiO2 filler on the wear characteristics of flax fiber-reinforced epoxy composite using the Taguchi approach

Author:

Prabhu Ravikantha,Mendonca Sharun,Bellairu Pavana Kumara,DSouza Rudolf Charles,Bhat Thirumaleshwara

Abstract

Purpose This study aims to investigate the impact of titanium oxide (TiO2) filler on the coefficient of friction (COF) and specific wear rate (SWR) in flax fiber reinforced epoxy composites (FFRCs) under abrasive wear conditions utilizing the Taguchi approach. The primary objective is to enhance wear resistance and promote the development of sustainable materials for various applications. Design/methodology/approach Epoxy/flax composites with varying TiO2 filler content (0–8 wt%) are fabricated through the hand layup method. Subsequently, wear testing is conducted following ASTM G99-05 standards. The Taguchi design of experiments (DOE) and analysis of variance (ANOVA) are utilized for statistical analysis. Findings Results indicate a significant improvement in abrasive wear properties with the incorporation of TiO2 filler. The COF is found to be most influenced by the normal load (55.19%), followed by grit size, wt% TiO2 filler and sliding distance. SWR is found to be most influenced by the grit size (42.92%), followed by wt% TiO2, normal load and sliding distance. Notably, the Taguchi model aligns well with experimental results, demonstrating its efficacy in predicting the abrasive wear behavior of FFRCs. Originality/value This research introduces a novel hybrid composite that combines TiO2 filler and flax fibers, showcasing their potential to enhance the tribological properties of epoxy composites. The study offers valuable insights into optimizing abrasive wear test variables in natural fiber-reinforced composites using Taguchi DOE and ANOVA, crucial for improving the performance of sustainable materials in engineering applications.

Publisher

Emerald

Reference41 articles.

1. Characterization of recycled low density polyethylene and eggshell particulate composite (rldpe/esp);International Journal of Current Research,2015

2. An investigation into the wear behaviour of a hybrid metal matrix composite under dry sliding conditions using Taguchi and ANOVA methods;Journal of Bio- and Tribo-Corrosion,2022

3. Natural fiber reinforced polymer composites for automobile accessories;American Journal of Environmental Science,2013

4. Tribological properties of epoxy nanocomposites: part II. A combinative effect of short carbon fibre with nano-TiO2;Wear,2006

5. Optimization of test parameters that influence on dry sliding wear performance of steel embedded glass/epoxy hybrid composites by using the Taguchi approach;Tribology in Industry,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3