Tradeoffs between safe/comfortable headways versus mobility-enhancing headways in an automated driving environment: preliminary insights using a driving simulator experiment

Author:

Li Yujie,Chen Tiantian,Chen SikaiORCID,Labi Samuel

Abstract

PurposeThe anticipated benefits of connected and autonomous vehicles (CAVs) include safety and mobility enhancement. Small headways between successive vehicles, on one hand, can cause increased capacity and throughput and thereby improve overall mobility. On the other hand, small headways can cause vehicle occupant discomfort and unsafety. Therefore, in a CAV environment, it is important to determine appropriate headways that offer a good balance between mobility and user safety/comfort.Design/methodology/approachIn addressing this research question, this study carried out a pilot experiment using a driving simulator equipped with a Level-3 automated driving system, to measure the threshold headways. The Method of Constant Stimuli (MCS) procedure was modified to enable the estimation of two comfort thresholds. The participants (drivers) were placed in three categories (“Cautious,” “Neutral” and “Confident”) and 250 driving tests were carried out for each category. Probit analysis was then used to estimate the threshold headways that differentiate drivers' discomfort and their intention to re-engage the driving tasks.FindingsThe results indicate that “Cautious” drivers tend to be more sensitive to the decrease in headways, and therefore exhibit greater propensity to deactivate the automated driving mode under a longer headway relative to other driver groups. Also, there seems to exist no driver discomfort when the CAV maintains headway up to 5%–9% shorter than the headways they typically adopt. Further reduction in headways tends to cause discomfort to drivers and trigger take over control maneuver.Research limitations/implicationsIn future studies, the number of observations could be increased further.Practical implicationsThe study findings can help guide specification of user-friendly headways specified in the algorithms used for CAV control, by vehicle manufacturers and technology companies. By measuring and learning from a human driver's perception, AV manufacturers can produce personalized AVs to suit the user's preferences regarding headway. Also, the identified headway thresholds could be applied by practitioners and researchers to update highway lane capacities and passenger-car-equivalents in the autonomous mobility era.Originality/valueThe study represents a pioneering effort and preliminary pilot driving simulator experiment to assess the tradeoffs between comfortable headways versus mobility-enhancing headways in an automated driving environment.

Publisher

Emerald

Reference57 articles.

1. Effect of minimum headway distance on connectivity of VANETs;AEU-International Journal of Electronics and Communications,2015

2. Age differences in simulated driving performance: compensatory processes;Accident Analysis and Prevention,2012

3. An examination of teen drivers' car-following behavior under naturalistic driving conditions: with and without an advanced driving assistance system;Accident Analysis and Prevention,2020

4. Using driving simulators to assess driving safety;Accident Analysis and Prevention,2010

5. Mental workload when driving in a simulator: effects of age and driving complexity;Accident Analysis and Prevention,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3