Future of Mining and Geology: Increase in the Use of Cave Mining Methods to Extract Ore Over the Next 30 Years

Author:

van As Andre1,Wood Dan1

Affiliation:

1. W.H. Bryan Mining and Geology Research Centre, Sustainable Minerals Institute, University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

Abstract The mining industry faces a period of increasingly difficult challenges over the next 30 years. The increasing demand for traditional mineral resources will likely continue unabated as developing countries modernize and the transition from fossil fuels to renewable energy sources ramps up. Compounding the challenge will be more rigorous constraints on mining imposed by environmental, social, and corporate governance (ESG) standards and regulations, as well as the progression from open-pit and shallow underground deposits to large, deeper, potentially lower-grade deposits, where underground mass mining methods are the only viable option. The latter change will especially apply to metals that are critical to mass electrification, including the traditionally required metals such as Cu, Ni, Co, Mn, Zn, U, etc. The more expensive-to-produce critical metals, such as Li, rare earths, high-purity alumina, etc., are currently only used in smaller quantities, and thus open-pit mining of these may remain viable until their near-surface resources are depleted. The large-scale mining of Cu, Ni, and Mo in particular will increasingly rely on cave mining methods, as these are the only profitable underground methods capable of yielding the large tonnages necessary to meet global demands, such as raising living standards within developing countries and providing the foundation for mass electrification of modern society, and all at a time when shallow deposits mined by open pit are becoming scarce. The application of cave mining is thus expected to increase in the future for deep mineral deposits with characteristics that are suited to this mining method. However, poor cave mine performance and/or unpredicted rock-mass responses (e.g., mine-induced seismicity) during cave mining can threaten the viability of the mine and will reduce investor confidence in this method. Irrespective of whether mining is of a traditional metal on a very large (mass) scale, or of a presently critical metal that now has lower tonnage requirements, we predict that geology will need to be more comprehensively considered during mine planning and design—right from the early stages of mine study—because of the uncertainties that the host rocks (geology) present to mining. This will be especially important in complying with the ESG constraints that are being applied to mining companies, in addition to the concept of sustainability that they also seek to address. We review—and propose remediation research of—the various geology-related issues that are already causing concern during mass underground mining by caving of Cu ore; some of these issues are equally applicable to other types of mining, such as open-pit and narrow-width extraction.

Publisher

Society of Economic Geologists, Inc.

Reference30 articles.

1. Future global mineral resources;Arndt;Geochemical Perspectives,2017

2. Understanding geologic uncertainty in mining studies;Carlson;SEG Newsletter,2019

3. Importance of geology in cave mining;Chitombo;SEG Newsletter,2019

4. Mineral economics and the business of mineral supply;Doggett;SEG Discovery,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3