Quantitative Mineral Mapping of Drill Core Surfaces I: A Method for µXRF Mineral Calculation and Mapping of Hydrothermally Altered, Fine-Grained Sedimentary Rocks from a Carlin-Type Gold Deposit

Author:

Barker Rocky D.1,Barker Shaun L.L.2,Wilson Siobhan A.3,Stock Elizabeth D.4

Affiliation:

1. School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand 3240

2. CODES ARC Centre of Excellence in Ore Deposits, University of Tasmania, Private Bag 126, Hobart, Tasmania, Australia 7001

3. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

4. Barrick Gold Exploration Inc., 1655 Mountain City Hwy, Elko, Nevada 89801

Abstract

Abstract Mineral distributions can be determined in drill core samples from a Carlin-type gold deposit, using micro-X-ray fluorescence (µXRF) raster data. Micro-XRF data were collected using a Bruker Tornado µXRF scanner on split drill core samples (~25 × 8 cm) with data collected at a spatial resolution of ~100 µm. Bruker AMICS software was used to identify mineral species from µXRF raster data, which revealed that many individual sample spots were mineral mixtures due to the fine-grained nature of the samples. In order to estimate the mineral abundances in each pixel, we used a linear programming (LP) approach on quantified µXRF data. Quantification of µXRF spectra was completed using a fundamental parameters (FP) standardless approach. Results of the FP method compared to standardized wavelength dispersive spectrometry (WDS)-XRF of the same samples showed that the FP method for quantification of µXRF spectra was precise (R2 values of 0.98–0.97) although the FP method gave a slight overestimate of Fe and K and an underestimate of Mg abundance. Accuracy of the quantified µXRF chemistry results was further improved by using the WDS-XRF data as a calibration correction before calculating mineralogy using LP. The LP mineral abundance predictions were compared to Rietveld refinement results using X-ray diffraction (XRD) patterns collected from powders of the same drill core samples. The root mean square error (RMSE) for LP-predicted mineralogy compared to quantitative XRD results ranges from 0.91 to 7.15% for quartz, potassium feldspar, pyrite, kaolinite, calcite, dolomite, and illite. The approaches outlined here demonstrates that µXRF maps can be used to determine mineralogy, mineral abundances, and mineralogical textures not visible with the naked eye from fine-grained sedimentary rocks associated with Carlin-type Au deposits. This approach is transferable to any ore deposit, but particularly useful in sedimentary-hosted ore deposits where ore and gangue minerals are often fine grained and difficult to distinguish in hand specimen.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3