Ore Remobilization History of the Metamorphosed Rävliden North Volcanogenic Massive Sulfide Deposit, Skellefte District, Sweden

Author:

Rincon Jonathan1,Jansson Nils1,Thomas Helen2,Kaiser Majka Christiane2,Persson Mac Fjellerad2,Nordfeldt Erik2,Wanhainen Christina1

Affiliation:

1. 1 Division of Geosciences and Environmental Engineering, Swedish School of Mines, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden

2. 2 Exploration department, Boliden Mineral AB, 93681 Boliden, Sweden

Abstract

Abstract The Skellefte district in northern Sweden hosts many volcanogenic massive sulfide (VMS) deposits and is considered one of the most important European mining districts for Cu, Zn, Pb, Ag, and Au. The volcanic and sedimentary rocks that the VMS deposits are hosted in were deformed during the Svecokarelian orogeny, with three documented regional deformation phases. These events imparted a distinct attitude and geometry to the deposits, their host succession, and discordant zones of synvolcanic hydrothermal alteration. Few studies have investigated the detailed deformation effects on the sulfide minerals. In this contribution, we document the structural characteristics and remobilization history of mineralization at the Rävliden North Zn-Pb-Cu-Ag deposit—one of the most important recent discoveries in the district consisting of 8.5 million tonnes (Mt) grading 1.01% Cu, 3.45% Zn, 0.53% Pb, 78.60 g/t Ag, and 0.23 g/t Au. At Rävliden, massive to semimassive sphalerite-rich mineralization with lesser pyrrhotite, galena, pyrite, and silver minerals occurs structurally above stringer-type mineralization dominated by chalcopyrite, pyrrhotite, and pyrite. These mineralization types exhibit evidence of deformation and remobilization such as (1) sulfide-alignment parallel to tectonic foliations; (2) rounded wall-rock tectonoclasts in a ductile deformed sulfide matrix (“ball ore” or durchbewegt ore); and (3) sulfides in tension gashes, strain shadows, piercement veins, and late, straight veinlets crosscutting tectonic fabrics. These features are attributed to polyphase deformation during the D1, D2, and D3 events at temperature ranging from 200° to 550°C. Remobilization of sulfides was mostly within the bounds of the main mineralization (i.e., 10–100 m), with few local external occurrences. A combination of solid-state and fluid-assisted remobilization processes are inferred. Rare brittle veinlets and zeolite-cemented breccias with sphalerite, galena, and silver minerals occur in the stratigraphic hanging wall, where they crosscut all Svecokarelian structures. This mineralization type is highly reminiscent of Phanerozoic low-T vein- and breccia-hosted Pb-Zn deposits of the Lycksele-Storuman area west of Rävliden North, which have been linked to far-field effects associated with the opening of the Iapetus Ocean (0.7–0.5 Ga). We suggest that this Zn-Pb mineralizing event led to the formation of the late sulfide-zeolite veinlets and breccias at Rävliden North, and that elements such as Ag and Sb within this mineralization were locally remobilized from Rävliden.

Publisher

Society of Economic Geologists, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3