The Productora Cu-Au-Mo Deposit, Chile: A Mesozoic Magmatic-Hydrothermal Breccia Complex with Both Porphyry and Iron Oxide Cu-Au Affinities

Author:

Escolme Angela1,Cooke David R.1,Hunt Julie2,Berry Ron F.1,Maas Roland3,Creaser Robert A.4

Affiliation:

1. ARC Research Hub for Transforming the Mining Value Chain (TMVC) and Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Hobart, Tasmania 7001, Australia

2. CODES, University of Tasmania, Hobart, Tasmania 7001, Australia

3. School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia

4. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada

Abstract

Abstract The Productora Cu-Au-Mo deposit is hosted by a Cretaceous hydrothermal breccia complex in the Coastal Cordillera of northern Chile. The current resource, which includes the neighboring Alice Cu-Mo porphyry deposit, is estimated at 236.6 Mt grading 0.48% Cu, 0.10 g/t Au, and 135 ppm Mo. Local wall rocks consist of a thick sequence of broadly coeval rhyolite to rhyodacite lapilli tuffs (128.7 ± 1.3 Ma; U-Pbzircon) and two major intrusions: the Cachiyuyito tonalite and Ruta Cinco granodiorite batholith (92.0 ± 1.0 Ma; U-Pbzircon). Previous studies at Productora concluded the deposit had strong affinities with the iron oxide copper-gold (IOCG) clan and likened the deposit to Candelaria. Based on new information, we document the deposit geology in detail and propose a new genetic model and alternative classification as a magmatic-hydrothermal breccia complex with closer affinities to porphyry systems. Hydrothermal and tectonic breccias, veins, and alteration assemblages at Productora define five paragenetic stages: stage 1 quartz-pyrite–cemented breccias associated with muscovite alteration, stage 2 chaotic matrix-supported tectonic-hydrothermal breccia with kaolinite-muscovite-pyrite alteration, stage 3 tourmaline-pyrite-chalcopyrite ± magnetite ± biotite-cemented breccias and associated K-feldspar ± albite alteration, stage 4 chalcopyrite ± pyrite ± muscovite, illite, epidote, and chlorite veins, and stage 5 calcite veins. The Productora hydrothermal system crosscuts earlier-formed sodic-calcic alteration and magnetite-apatite mineralization associated with the Cachiyuyito stock. Main-stage mineralization at Productora was associated with formation of the stage 3 hydrothermal breccia. Chalcopyrite is the dominant hypogene Cu mineral and occurs predominantly as breccia cement and synbreccia veins with pyrite. The Alice Cu-Mo porphyry deposit is characterized by disseminated chalcopyrite and quartz-pyrite-chalcopyrite ± molybdenite vein stockworks hosted by a granodiorite porphyry stock. Alice is spatially associated with the Silica Ridge lithocap, which is characterized by massive, fine-grained, quartz-altered rock above domains of alunite, pyrophyllite, and dickite. Rhenium-Os dating of molybdenite indicates that main-stage mineralization at Productora occurred at 130.1 ± 0.6 Ma, and at 124.1 ± 0.6 Ma in the Alice porphyry. Chalcopyrite and pyrite from Productora have δ34Ssulfide values from –8.5 to +2.2‰, consistent with a magmatic sulfur source and fluids evolving under oxidizing conditions. No significant input from evaporite- or seawater-sourced fluids was detected. Stage 3 tourmalines have average initial Sr of 0.70397, consistent with an igneous-derived Sr source. The Productora magmatic-hydrothermal breccia complex formed as a result of explosive volatile fluid release from a hydrous intrusive complex. Metal-bearing fluids were of magmatic affinity and evolved under oxidizing conditions. Despite sharing many similarities with the Andean IOCG clan (strong structural control, regional sodic-calcic alteration, locally anomalous U), fluid evolution at the Productora Cu-Au-Mo deposit is more consistent with that of a porphyry-related magmatic hydrothermal breccia (sulfur-rich, acid alteration assemblages and relatively low magnetite contents, <5 vol %). The Productora camp is an excellent example of the close spatial association of Mesozoic magnetite-apatite, porphyry, and magmatic-hydrothermal breccia mineralization styles, a relationship seen throughout the Coastal Cordillera of northern Chile.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3