Affiliation:
1. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
2. Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Odisha 769008, India
3. Department of Geological Sciences, Gauhati University, Guwahati 781014, India
Abstract
Abstract
The lone granodiorite-hosted gold deposit at Dona sector of Jonnagiri, eastern Dharwar craton, India, contains typical shear-hosted and vein-hosted alteration zones. Pyrite is the dominant sulfide mineral in these alteration zones. Texturally three varieties of pyrites were identified in these alteration zones: (1) early pyrite-I is coarse to medium grained and subhedral shaped and contains near margin-parallel silicate inclusions, (2) main (ore)-stage pyrite-II overgrows early pyrite-I and also occurs as discrete grains invariably associated with visible gold, and (3) late-stage pyrite-III is anhedral and coarse grained and contains randomly oriented inclusions of silicates, sulfides, and native gold grains.
Electron microprobe analysis, coupled with X-ray element mapping and laser ablation-inductively coupled plasma-mass spectrometry, reveals that most early pyrites (pyrite-I) have higher concentrations of As and Au in both the zones. The shear-hosted main-stage pyrite-II can be divided into Ni-rich (median 211 ppm) pyrite-IIa and Co-rich (median 274 ppm) pyrite-IIb, respectively. While invisible gold content is higher in vein-hosted late-stage pyrite (pyrite-IIIa; ≤287 ppm) when compared to shear-hosted pyrites, native visible gold is associated with only vein-hosted main- and late-stage pyrites (pyrite-II and IIIa). Arsenic, Ni, Au, Se, Mo, and Te concentrations decrease from pyrite-I to pyrite-III, reflecting remobilization of trace elements during subsequent dissolution-reprecipitation of early formed pyrites. The oscillatory zoning of As, Co, and Ni and slight increase in Bi, Te, Se, Au, and Ag in pyrite-II and pyrite-IIIa represent pressure fluctuations and repeated local fluid phase separation in the ore-forming environment. A positive correlation of Au with Pb, Sb, Bi, and Te confirms the presence of nanoinclusions of mineral phases such as nagyagite, Pb-Sb-Bi tellurides, Au-Ag tellurides, tellurosulfides, and sulfosalts within pyrites, particularly in the vein-hosted zone.
Based on several lines of evidence, the following paragenetic sequence is proposed for pyrite formation at Dona, Jonnagiri. Rapid crystallization of early (porous) pyrite-I was followed by its dissolution during ~E-W–trending Sh1 shearing. Crystallization of main-stage pyrite-II and the late-stage pyrite-IIIa is the product of dissolution-reprecipitation of early pyrite during ~N-S–trending Sh2 shearing. Changing fluid compositions caused by episodic fault-valve actions and associated boiling resulted in dissolution-reprecipitation of early formed pyrites and remobilization of trace elements. This further resulted in precipitation of the bulk of gold within the inner vein-hosted zone during the later Sh2 shearing event. At the culmination of shearing, late-stage pyrite-IIIb precipitation occurs with very low concentrations of all trace elements, including gold.
Publisher
Society of Economic Geologists
Subject
Economic Geology,Geochemistry and Petrology,Geology,Geophysics